Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pract Radiat Oncol ; 10(1): e27-e36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31382026

RESUMO

PURPOSE: The heart has been identified as a potential significant organ at risk in patients with locally advanced non-small cell lung cancer treated with radiation. Practice patterns and radiation dose delivered to the heart in routine practice in academic and community settings are unknown. METHODS AND MATERIALS: Between 2012 and 2017, 746 patients with stage III non-small cell lung cancer were treated with radiation within the statewide Michigan Radiation Oncology Quality Consortium (MROQC). Cardiac radiation dose was characterized, including mean and those exceeding historical or recently proposed Radiation Therapy Oncology Group and NRG Oncology constraints. Sites were surveyed to determine dose constraints used in practice. Patient-, anatomic-, and treatment-related associations with cardiac dose were analyzed using multivariable regression analysis and inverse probability weighting. RESULTS: Thirty-eight percent of patients had a left-sided primary, and 80% had N2 or N3 disease. Median prescription was 60 Gy (interquartile range, 60-66 Gy). Twenty-two percent of patients were prescribed 60 Gy in 2012, which increased to 62% by 2017 (P < .001). Median mean heart dose was 12 Gy (interquartile range, 5-19 Gy). The volume receiving 30 Gy (V30 Gy) exceeded 50% in 5% of patients, and V40 Gy was >35% in 3% of cases. No heart dose constraint was uniformly applied. Intensity modulated radiation therapy (IMRT) usage increased from 33% in 2012 to 86% in 2017 (P < .001) and was significantly associated with more complex cases (larger planning target volume, higher stage, and preexisting cardiac disease). In multivariable regression analysis, IMRT was associated with a lower percent of the heart receiving V30 Gy (absolute reduction = 3.0%; 95% confidence interval, 0.5%-5.4%) and V50 Gy (absolute reduction = 3.6%; 95% confidence interval, 2.4%-4.8%) but not mean dose. In inverse probability weighting analysis, IMRT was associated with 29% to 48% relative reduction in percent of the heart receiving V40-V60 Gy without increasing lung or esophageal dose or compromising planning target volume coverage. CONCLUSIONS: Within MROQC, historical cardiac constraints were met in most cases, yet 1 in 4 patients received a mean heart dose exceeding 20 Gy. Future work is required to standardize heart dose constraints and to develop treatment approaches that allow for constraints to be met without compromising other planning goals.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Coração/efeitos da radiação , Neoplasias Pulmonares/radioterapia , Lesões por Radiação/prevenção & controle , Radioterapia de Intensidade Modulada/efeitos adversos , Fatores Etários , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Relação Dose-Resposta à Radiação , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Michigan/epidemiologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Órgãos em Risco/efeitos da radiação , Guias de Prática Clínica como Assunto , Padrões de Prática Médica/normas , Padrões de Prática Médica/estatística & dados numéricos , Lesões por Radiação/epidemiologia , Lesões por Radiação/etiologia , Radioterapia (Especialidade)/normas , Radioterapia (Especialidade)/estatística & dados numéricos , Dosagem Radioterapêutica/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Fatores Sexuais
2.
Med Dosim ; 44(1): 61-66, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29571934

RESUMO

We conducted a multi-institutional assessment of a recently developed end-to-end monthly quality assurance (QA) protocol for external beam radiation therapy treatment chains. This protocol validates the entire treatment chain against a baseline to detect the presence of complex errors not easily found in standard component-based QA methods. Participating physicists from 3 institutions ran the end-to-end protocol on treatment chains that include Imaging and Radiation Oncology Core (IROC)-credentialed linacs. Results were analyzed in the form of American Association of Physicists in Medicine (AAPM) Task Group (TG)-119 so that they may be referenced by future test participants. Optically stimulated luminescent dosimeter (OSLD), EBT3 radiochromic film, and A1SL ion chamber readings were accumulated across 10 test runs. Confidence limits were calculated to determine where 95% of measurements should fall. From calculated confidence limits, 95% of measurements should be within 5% error for OSLDs, 4% error for ionization chambers, and 4% error for (96% relative gamma pass rate) radiochromic film at 3% agreement/3 mm distance to agreement. Data were separated by institution, model of linac, and treatment protocol (intensity-modulated radiation therapy [IMRT] vs volumetric modulated arc therapy [VMAT]). A total of 97% of OSLDs, 98% of ion chambers, and 93% of films were within the confidence limits; measurements were found outside these limits by a maximum of 4%, < 1%, and < 1%, respectively. Data were consistent despite institutional differences in OSLD reading equipment and radiochromic film calibration techniques. Results from this test may be used by clinics for data comparison. Areas of improvement were identified in the end-to-end protocol that can be implemented in an updated version. The consistency of our data demonstrates the reproducibility and ease-of-use of such tests and suggests a potential role for their use in broad end-to-end QA initiatives.


Assuntos
Protocolos Clínicos , Dosimetria por Luminescência Estimulada Opticamente , Radioterapia de Intensidade Modulada/normas , Humanos
3.
Int J Radiat Oncol Biol Phys ; 100(4): 1057-1066, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29485047

RESUMO

A substantial barrier to the single- and multi-institutional aggregation of data to supporting clinical trials, practice quality improvement efforts, and development of big data analytics resource systems is the lack of standardized nomenclatures for expressing dosimetric data. To address this issue, the American Association of Physicists in Medicine (AAPM) Task Group 263 was charged with providing nomenclature guidelines and values in radiation oncology for use in clinical trials, data-pooling initiatives, population-based studies, and routine clinical care by standardizing: (1) structure names across image processing and treatment planning system platforms; (2) nomenclature for dosimetric data (eg, dose-volume histogram [DVH]-based metrics); (3) templates for clinical trial groups and users of an initial subset of software platforms to facilitate adoption of the standards; (4) formalism for nomenclature schema, which can accommodate the addition of other structures defined in the future. A multisociety, multidisciplinary, multinational group of 57 members representing stake holders ranging from large academic centers to community clinics and vendors was assembled, including physicists, physicians, dosimetrists, and vendors. The stakeholder groups represented in the membership included the AAPM, American Society for Radiation Oncology (ASTRO), NRG Oncology, European Society for Radiation Oncology (ESTRO), Radiation Therapy Oncology Group (RTOG), Children's Oncology Group (COG), Integrating Healthcare Enterprise in Radiation Oncology (IHE-RO), and Digital Imaging and Communications in Medicine working group (DICOM WG); A nomenclature system for target and organ at risk volumes and DVH nomenclature was developed and piloted to demonstrate viability across a range of clinics and within the framework of clinical trials. The final report was approved by AAPM in October 2017. The approval process included review by 8 AAPM committees, with additional review by ASTRO, European Society for Radiation Oncology (ESTRO), and American Association of Medical Dosimetrists (AAMD). This Executive Summary of the report highlights the key recommendations for clinical practice, research, and trials.


Assuntos
Radioterapia (Especialidade)/normas , Sociedades Científicas/normas , Terminologia como Assunto , Comitês Consultivos/organização & administração , Comitês Consultivos/normas , Ensaios Clínicos como Assunto , Humanos , Dosagem Radioterapêutica/normas , Planejamento da Radioterapia Assistida por Computador/normas , Padrões de Referência , Software/normas , Estados Unidos
4.
Med Dosim ; 43(3): 251-257, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29174796

RESUMO

Commissioning a new treatment planning system (TPS) involves many time-consuming tasks. We investigated the role that knowledge-based planning (KBP) can play in aiding a clinic's transition to a new TPS. Sixty clinically treated prostate/prostate bed intensity-modulated radiation therapy (IMRT) plans were exported from an in-house TPS and were used to create a KBP model in a newly implemented commercial application. To determine the benefit that KBP may have in a TPS transition, the model was tested on 2 groups of patients. Group 1 consisted of the first 10 prostate/prostate bed patients treated in the commercial TPS after the transition from the in-house TPS. Group 2 consisted of 10 patients planned in the commercial TPS after 8 months of clinical use. The KBP-generated plan was compared with the clinically used plan in terms of plan quality (ability to meet planning objectives and overall dose metrics) and planning efficiency (time required to generate clinically acceptable plans). The KBP-generated plans provided a significantly improved target coverage (p = 0.01) compared with the clinically used plans for Group 1, but yielded plans of comparable target coverage to the clinically used plans for Group 2. For the organs at risk, the KBP-generated plans produced lower doses, on average, for every normal-tissue objective except for the maximum dose to 0.1 cc of rectum. The time needed for the KBP-generated plans ranged from 6 to 15 minutes compared to 30 to 150 and 15 to 60 minutes for manual planning in Groups 1 and 2, respectively. KBP is a promising tool to aid in the transition to a new TPS. Our study indicates that high-quality treatment plans could have been generated in the newly implemented TPS more efficiently compared with not using KBP. Even after 8 months of the clinical use, KBP still showed an increase in plan quality and planning efficiency compared with manual planning.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Humanos , Masculino , Neoplasias da Próstata/radioterapia
6.
J Appl Clin Med Phys ; 17(5): 34-46, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27685109

RESUMO

To create a comprehensive dataset of peripheral dose (PD) measurements from a new generation of linear accelerators with and without the presence of a newly designed fetal shield, PD measurements were performed to evaluate the effects of depth, field size, distance from the field edge, collimator angle, and beam modi-fiers for common treatment protocols and modalities. A custom fetal lead shield was designed and made for our department that allows external beam treatments from multiple angles while minimizing the need to adjust the shield during patient treatments. PD measurements were acquired for a comprehensive series of static fields on a stack of Solid Water. Additionally, PDs from various clinically relevant treatment scenarios for pregnant patients were measured using an anthropomorphic phantom that was abutted to a stack of Solid Water. As expected, the PD decreased as the distance from the field edge increased and the field size decreased. On aver-age, a PD reduction was observed when a 90° collimator rotation was applied and/or when the tertiary MLCs and jaws defined the field aperture. However, the effect of the collimator rotation (90° versus 0°) in PD reduction was not found to be clini-cally significant when the tertiary MLCs were used to define the field aperture. In the presence of both the MLCs and the fetal shield, the PD was reduced by 58% at a distance of 10 cm from the field edge. The newly designed fetal shield may effectively reduce fetal dose and is relatively easy to setup. Due to its design, we are able to use a broad range of treatment techniques and beam angles. We believe the acquired comprehensive PD dataset collected with and without the fetal shield will be useful for treatment teams to estimate fetal dose and help guide decisions on treat-ment techniques without the need to perform pretreatment phantom measurements.


Assuntos
Feto/efeitos da radiação , Neoplasias/radioterapia , Imagens de Fantasmas , Lesões por Radiação/prevenção & controle , Proteção Radiológica/instrumentação , Feminino , Humanos , Gravidez , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Espalhamento de Radiação
7.
Med Phys ; 40(8): 081711, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23927308

RESUMO

PURPOSE: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter. METHODS: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3×6 cm2 radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study. RESULTS: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053±0.036, 0.121±0.023, and 0.093±0.013 cm. CONCLUSIONS: The method presented here provides an independent technique to verify the calibration of an electromagnetic tracking system to radiation isocenter. The calibration accuracy of the system was better than the 0.2 cm accuracy stated by the manufacturer. However, it should not be assumed to be zero, especially for stereotactic radiation therapy treatments where planning target volume margins are very small.


Assuntos
Ondas de Rádio , Calibragem , Fenômenos Mecânicos , Incerteza
8.
Radiat Oncol ; 7: 82, 2012 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-22681643

RESUMO

BACKGROUND: Low-risk prostate cancer (PCa) patients have excellent outcomes, with treatment modality often selected by perceived effects on quality of life. Acute urinary symptoms are common during external beam radiotherapy (EBRT), while chronic symptoms have been linked to urethral dose. Since most low-risk PCa occurs in the peripheral zone (PZ), we hypothesized that EBRT using urethral sparing intensity modulated radiation therapy (US-IMRT) could improve urinary health-related quality of life (HRQOL) while maintaining high rates of PCa control. METHODS: Patients with National Comprehensive Cancer Network (NCCN) defined low-risk PCa with no visible lesion within 5 mm of the prostatic urethra on MRI were randomized to US-IMRT or standard (S-) IMRT. Prescription dose was 75.6 Gy in 41 fractions to the PZ + 3-5 mm for US-IMRT and to the prostate + 3 mm for S-IMRT. For US-IMRT, mean proximal and distal urethral doses were limited to 65 Gy and 74 Gy, respectively. HRQOL was assessed using the Expanded Prostate Cancer Index (EPIC) Quality of Life questionnaire. The primary endpoint was change in urinary HRQOL at 3 months. RESULTS: From June 2004 to November 2006, 16 patients were randomized, after which a futility analysis concluded that continued accrual was unlikely to demonstrate a difference in the primary endpoint. Mean change in EPIC urinary HRQOL at 3 months was -0.5 ± 11.2 in the US-IMRT arm and +3.9 ± 15.3 in the S-IMRT arm (p = 0.52). Median PSA nadir was higher in the US-IMRT arm (1.46 vs. 0.78, p = 0.05). At 4.7 years median follow-up, three US-IMRT and no S-IMRT patients experienced PSA failure (p = 0.06; HR 8.8, 95% CI 0.9-86). Two out of 3 patients with PSA failure had biopsy-proven local failure, both located contralateral to the original site of disease. CONCLUSIONS: Compared with S-IMRT, US-IMRT failed to improve urinary HRQOL and resulted in higher PSA nadir and inferior biochemical control. The high rate of PSA failure and contralateral local failures in US-IMRT patients, despite careful selection of MRI-screened low-risk patients, serve as a cautionary tale for focal PCa treatments.


Assuntos
Adenocarcinoma/radioterapia , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/métodos , Uretra/efeitos da radiação , Humanos , Masculino , Qualidade de Vida
9.
Int J Radiat Oncol Biol Phys ; 78(5): 1594-603, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20832186

RESUMO

PURPOSE: To establish optimal intensity-modulated radiation therapy (IMRT) techniques for treating the left breast and regional nodes, using moderate deep-inspiration breath hold. METHODS AND MATERIALS: We developed four IMRT plans of differing complexity for each of 10 patients following lumpectomy for left breast cancer. A dose of 60 Gy was prescribed to the boost planning target volume (PTV) and 52.2 Gy to the breast and supraclavicular, infraclavicular, and internal mammary nodes. Two plans used inverse-planned beamlet techniques: a 9-field technique, with nine equispaced axial beams, and a tangential beamlet technique, with three to five ipsilateral beams. The third plan (a segmental technique) used a forward-planned multisegment technique, and the fourth plan (a segmental blocked technique) was identical but included a block to limit heart dose. Dose--volume histograms were generated, and metrics chosen for comparison were analyzed using the paired t test. RESULTS: Mean heart and left anterior descending coronary artery doses were similar with the tangential beamlet and segmental blocked techniques but higher with the segmental and 9-field techniques (mean paired difference of 15.1 Gy between segmental and tangential beamlet techniques, p < 0.001). Substantial volumes of contralateral tissue received dose with the 9-field technique (mean right breast V2, 58.9%; mean right lung V2, 75.3%). Minimum dose to ≥95% of breast PTV was, on average, 45.9 Gy with tangential beamlet, 45.0 Gy with segmental blocked, 51.4 Gy with segmental, and 50.2 Gy with 9-field techniques. Coverage of the internal mammary region was substantially better with the two beamlet techniques than with the segmental blocked technique. CONCLUSIONS: Compared to the 9-field beamlet and segmental techniques, a tangential beamlet IMRT technique reduced exposure to normal tissues and maintained reasonable target coverage.


Assuntos
Neoplasias da Mama/radioterapia , Irradiação Linfática/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Adulto , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Vasos Coronários , Feminino , Coração , Humanos , Mastectomia Segmentar , Pessoa de Meia-Idade , Órgãos em Risco , Doses de Radiação , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...